Formation of functional gap junctions in amniotic fluid-derived stem cells induced by transmembrane co-culture with neonatal rat cardiomyocytes

نویسندگان

  • Jennifer Petsche Connell
  • Emily Augustini
  • Kenneth J Moise
  • Anthony Johnson
  • Jeffrey G Jacot
چکیده

Amniotic fluid-derived stem cells (AFSC) have been reported to differentiate into cardiomyocyte-like cells and form gap junctions when directly mixed and cultured with neonatal rat ventricular myocytes (NRVM). This study investigated whether or not culture of AFSC on the opposite side of a Transwell membrane from NRVM, allowing for contact and communication without confounding factors such as cell fusion, could direct cardiac differentiation and enhance gap junction formation. Results were compared to shared media (Transwell), conditioned media and monoculture media controls. After a 2-week culture period, AFSC did not express cardiac myosin heavy chain or troponin T in any co-culture group. Protein expression of cardiac calsequestrin 2 was up-regulated in direct transmembrane co-cultures and media control cultures compared to the other experimental groups, but all groups were up-regulated compared with undifferentiated AFSC cultures. Gap junction communication, assessed with a scrape-loading dye transfer assay, was significantly increased in direct transmembrane co-cultures compared to all other conditions. Gap junction communication corresponded with increased connexin 43 gene expression and decreased phosphorylation of connexin 43. Our results suggest that direct transmembrane co-culture does not induce cardiomyocyte differentiation of AFSC, though calsequestrin expression is increased. However, direct transmembrane co-culture does enhance connexin-43-mediated gap junction communication between AFSC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histological Validation of Heart Slices as a Model in Cardiac Research

Myocardial regeneration by stem cell transplantation is a new possible therapy to treat heart failure [3-5]. For the success of this strategy, it is vital for transplanted donor-derived cardiomyocytes to functionally integrate into the host myocardium [6]. Particularly, formation of appropriate intercellular communication via gap junctions, the structures responsible for the electrical coupling...

متن کامل

Cardiomyocyte Formation by Skeletal Muscle-Derived Multi-Myogenic Stem Cells after Transplantation into Infarcted Myocardium

BACKGROUND Cellular cardiomyoplasty for myocardial infarction has been developed using various cell types. However, complete differentiation and/or trans-differentiation into cardiomyocytes have never occurred in these transplant studies, whereas functional contributions were reported. METHODS AND RESULTS Skeletal muscle interstitium-derived CD34(+)/CD45(-) (Sk-34) cells were purified from gr...

متن کامل

Human Amniotic Fluid Cells Form Functional Gap Junctions with Cortical Cells

The usage of stem cells is a promising strategy for the repair of damaged tissue in the injured brain. Recently, amniotic fluid (AF) cells have received a lot of attention as an alternative source of stem cells for cell-based therapies. However, the success of this approach relies significantly on proper interactions between graft and host tissue. In particular, the reestablishment of functiona...

متن کامل

Study of Chondrogenic Effects of Chondrocytes Cocultured With Murine Bone Marrow-Derived Mesenchymal Stem Cells

Purpose: Co-culture systems of marrow derived mesenchymal stem cells (mMSCs) with mature chondrocytes have theoretically been considered as a putative way of MSCs chondrogenic differentiation. MSCs differentiated in this system could be used for transplantation purpose without of any need to their purification since the cells with which MSCs are co cultured are native cartilage cells. Despite o...

متن کامل

Study of Chondrogenic Effects of Chondrocytes Cocultured With Murine Bone Marrow-Derived Mesenchymal Stem Cells

Purpose: Co-culture systems of marrow derived mesenchymal stem cells (mMSCs) with mature chondrocytes have theoretically been considered as a putative way of MSCs chondrogenic differentiation. MSCs differentiated in this system could be used for transplantation purpose without of any need to their purification since the cells with which MSCs are co cultured are native cartilage cells. Despite o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2013